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LE’ZTER TO THE EDITOR 

Finite-size scaling study of non-equilibrium percolation 
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Institut fur Physik, Johannes Gutenberg-Universitat Mainz, 6500 Mainz, Staudinger Weg 
7, Federal Republic of Germany 

Received 6 November 1989, in final form 28 December 1989 

Abstract. Induced by phase separation in the lattice gas model a transient percolation 
phenomenon occurs for concentrations c exceeding a critical curve cyrr1( T, r ) ,  which 
depends both on temperature 7 and on the time t passed after the quench to a state inside 
the miscibility gap. A finite-size scaling analysis of extensive Monte Carlo data is carried 
out to locate cyrr1( T, t )  and to show that the critical behaviour of this percolation transition 
is consistent with random percolation, contrary to previous suggestions. 

When a binary mixture is quenched from an initial state that is macroscopically 
homogeneous to a final state inside the miscibility gap, the resulting inhomogeneous 
patterns which form due to the onset of phase separation (Gunton et a1 1983) may 
either have the character of isolated ‘droplets’ well separated from each other, or of 
an interconnected ‘percolating’ network of the minority atomic species on the back- 
ground of the majority ‘phase’. The transition between these two types of topologies 
is not identical to random percolation (Stauffer 1985), however, since the kinetics of 
cluster formation during phase separation is a transient non-equilibrium phenomenon 
where long range spatial correlations develop. 

This transition has recently been studied for the lattice gas model with nearest- 
neighbour interaction (Binder 1980, Heermann er a1 1987, Hayward et a1 1987). Here 
a ‘cluster’ (or ‘droplet’) is defined geometrically as in random percolation, by requiring 
that each site belonging to a cluster must be occupied and be a nearest neighbour of 
at least one other occupied site belonging to this cluster. Considering a ‘quenching 
experiment’ at fixed concentration c which starts with an initially random occupation 
of sites consistent with the chosen concentration (temperature T+cc in the lattice 
gas), the system is initially not percolating for c < c r n d o m )  , the critical concentration 
for random site percolation ( c y d o m )  - -0.312 for the simple cubic lattice). Hayward 
et a1 (1987) suggested a kind of ‘gelation transition’: as time proceeds, by random 
diffusion monomers (or small clusters) hit the large clusters which thereby grow and 
they eventually coalesce to form an infinite network at a time tcrit(c, T ) .  This means, 
on the other hand, that a system for c < cprr)( T, r )  is non-percolating, while for 
c > cprr’( T, t )  it percolates (we here denote the inverse function of the critical time 
tCrit(c, T )  in the plane of variables c and t as cprr)( T, t )  because this is a correlated 
percolation problem). However, although Hayward et a1 (1987) could not analyse the 
time dependence of T, t )  quantitatively, they speculated that the critical 
exponents of this non-equilibrium percolation transition differ from those of random 
percolation; this dynamic percolation problem then would form a new ‘universality 
class’. 
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In the present work, we attempt to clarify this problem by extensive Monte Carlo 
simulations, which are analysed by finite-size scaling methods (Kirkpatrick 1979, Binder 
1987). By this method, we are able to show that the curve cyrr’( T, t )  has a minimum 
in the (c, t )  plane (figure 1). Thus at T = 0.3 T, we find a significant regime of c, namely 
0.1718 s c s 0.312, where the dynamic percolation transition alluded to above occurs: 
clusters gel together into a percolating net. However, for 0.171 89% c < c ( ~ ~ ~ ~ )  p (Too) 
this percolating net exists only as a transient phenomenon (see also Heermann 1984), 
for a finite range of time tl:,!,(c, T) < r < t::/,(c, T). We have not attempted to estimate 
quantitatively the asymptotic value cyrr)( T, a), to which c(pCOrr)( T, t )  tends for r + CO, 
since this would require prohibitively large amounts of computer time. Already for 
c = 0.18 t$t(c, T = 0.3 T,) is about 360 time units, which means that the effort to study 
this percolation transition requires much more time than a study of the random 
percolation problem, where each configuration is generated in a single filling of the 
lattice, without any evolution in time. 

Despite the obviously transient characters of this new kind of percolation transition, 
we do not confirm the non-standard exponent estimates of Hayward et a1 (1987): 
rather within reasonable statistical errors, our exponent estimates agree with the random 
percolation exponents! We interpret this finding by the fact that during ‘spinodal 
decomposition’ (Gunton et al 1983) only finite-ranged correlations are created. 

In the following, we sketch the main points of the analysis that lead to these 
conclusions (see Lironis 1988 for more details). Following Kirkpatrick (1979) the 
critical concentration cyrr)( T, r )  is found from a finite-size analysis of the ‘spanning 
probability’ Psp(L, c, t )  that a cluster occurs in the system which spans from one 
boundary of the L x L x L system to the opposite boundary (and requiring this spanning 
property in all these spatial directions). For L-, CO, Psp( L, c < cPrr)(  T, t ) ,  r )  + 0, 
Psp( L, c > cyrr)( T, t ) ,  t )  = 1. Therefore the finite-size scaling assumptions (Barber 1983, 
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Figure 1. Critical curve c p “ ’ (  7 = 0.3 T,, I )  in the concentration (c)-time ( 1 )  plane, for 
the simple cubic nearest-neighbour lattice gas model which evolves in time through random 
nearest-neighbour exchanges of occupation variables (i.e. the kinetic lsing model of 
Kawasaki (1972)). Note that c y ) (  T, f = 0) = cFndom) - - 0.312 is off scale here. The state 
of the system is percolating above the curve shown and not percolating below. Time is 
measured in units of Monte Carlo steps (MCS) per lattice site. 
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Binder 1987) imply for Psp 

(1) 6 - C(COr') P,,(L, C, t )  = F s p ( i j ~ ~ " u )  p ( T , t ) , L - , W  

where Fss,($) is the appropriate scaling function and v the critical exponent of the 
connectedness length. Since (1) implies, that for c = cprr)( T, t )  all curves Psp( L, c, t )  
must have a common intersection point FsP(O), the critical concentration can be found 
without any assumption on critical exponents (figure 2). It is seen that cprr)( T, t )  can 
be estimated with a relative error of less than which is nearly an order of magnitude 
better precision than that of Hayward et al (1987). 
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Figure 2. Plot of the spanning probability P J L ,  c, t = 120) against c for four different 
lattice linear dimensions. The abscissa of the common intersection point yields c p r r ) (  T = 
0.3T,, t = 120)=0.1720. All times are measured in MCS per site. 

Figure 3 tests the scaling property of (1) more fully as well as the standard finite-size 
scaling relations for the percolation probability P,( L, c, t )  and percolation susceptibil- 

( 2 a )  

(2b)  

ity x(L, c, t ) ,  

P,( L, c, t )  = L-P/'Fm( 6CL'l") 

X (  L, C, t )  = L ~ / " , ~ ( S C L ' / " ) .  

Here P, is defined as the fraction of occupied sites that belong to the largest cluster 
in the system, and x = Z: s2ns( c ) / c ,  n , ( c )  being the concentration of clusters containing 
s sites, and the largest cluster is excluded from the sum. While these data refer to 
periodic boundary conditions, a cluster counting and subsequent finite-size scaling 
analysis has also been performed for free boundary conditions. In all cases similar 
quality of 'data collapsing' on the scaling functions is obtained as shown in figure 3. 
The final exponent estimates are 

Y 0.88 f 0.06 p = 0.42 f 0.02 y = 1.74 f 0.06. (3) 
Within the quoted error bars these numbers agree with the hyperscaling relation 
3 Y = y +2p and with the corresponding exponents for the random percolation problem 
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(Stauffer 1985). The estimate ~ ~ 0 . 7  due to Hayward et a1 (1987) is definitely ruled 
out-this work was hampered by a too low statistical accuracy, although the ‘raw data’ 
for P,(L, c, t )  were qualitatively similar to those used here (Lironis 1988). Also in the 
present case the statistical fluctuations are too large to prevent us from including more 
subtle effects (such as corrections to finite-size scaling, etc) into the analysis. 

In the spirit of figure 2, the phase diagram figure 1 implies that we must see two 
intersections in PJL,  c, t)  if we analyse it at fixed c as a function of t (e.g. figure 4). 
The strong statistical scatter of our data confuses somewhat the analysis, _but, imposing 
the condition that the value of the intersection point should be universal {Ps,(O) = 0.57}, 
the diagram given in figure 1 can be deduced by repeating the analysis shown in figure 
2 for other times. 
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Figure 4. Spanning probability Psp( L, c = 0.175, I )  against t for four different lattice linear 
dimensions. Note a first intersection at I = 60 and a second one at f 240. 

Apart from the questions about the universal properties of the percolation transition, 
one can also study the microscopic dynamic processes involved in this coalescence of 
clusters. For example, we have found that the decrease in the fraction of sites contained 
in ‘dangling ends’ with time (Lironis 1988) reflects the coarsening of the cluster structure, 
though the detailed kinetic mechanisms are not yet understood. t is also interesting 

s = 3, 5 )  in comparison with neighouring ones which are more stable (s  = 4, 6) due to 
a more compact configuration (figure 5). This observation indicates that faithful 
dynamical modelling of the ‘cluster dynamics’ processes, as has been proposed by 
various authors (Binder 1977, Binder et a1 1978, Langer and Schwartz 1980, Kampmann 
and Wagner 1984), is more difficult than previously thought. 

In summary, the ‘re-entrant’ character of dynamic percolation during phase sep- 
aration of lattice gas models of binary alloys has been quantitatively established, for 
the first time (figure 1); contrary to previous suggestions we find that this transition 
falls into the universality class of random percolation. While the critical exponents 
thus pose no problem, it is still unclear as to what extent dynamic percolation shows 
up in the scattering function, and also the detailed ‘cluster dynamics’ processes remain 
to be clarified. 

that for small cluster sizes one observes a depletion of less stab f e cluster sizes (e.g. 
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Figure 5. Cluster size distribution n,(L = 50, c = 0.15, I )  against Ig s for 12 times as indicated 
in the figure. Note the maximum which develops for s = 4. 
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